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On representations of the q-deformed Lorentz and 
Poincari algebras 
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I .Mm-Planrk-Lnsntur f i r  Physik, Fohnngcr Ring 6.  D.80805 Munchen. Germany 
T Sclnion Phlsik. Universit?d MOnchcn. Theresiensmk 37. D-80333 Mhchen.  Germaoy 

Received 2 March 1994 

Abstract. We construct explicitly all finite-dimensional representations of the quanNm Lorentz 
group S 4 ( 2 . @ ) .  Based on this we prove that the 9-deformed Lorentz algebra which was 
recently introduced can be considered as a Hopf algebra dual to SLq(2. C). The generaion of 
the q-deformed Loren& algebra act via a differential representation on a Hilbert space built of 
carepresentation spaces of the quantum Lorentz group. A chiral decomposition of the q-deformed 
Lorentz algebra is proposed. It is shown how spinor bases for the qdefonned P o i n d  algebra 
can be constructed. 

1. Introduction 

The symmetries of flat spacetime play an essential role in physics. For example, laws 
of physics are required to be invariant under Lorentz transformations and the notion of 
an elementary particle can be understood within the representation theory of the Poincad 
group. In recent years quantum groups have been investigated intensively. It has been 
shown that both Lorentz and Poincar.5 symmetiy admit a generalization within the concept 
of quantum groups [l-51. In this work we address some problems in the representation 
theory of the q-deformed Lorentz and Poincar.5 algebras. 

In section 2 we recall some facts about the 
representation theory of the quantum group SUq(2). It will turn out that the finite- 
dimensional corepresentations correspond to the space of undotted spinors of SLq(2, C). 
The space of dotted spinors or complex conjugate representations of the quantum Lorentz 
group (am) are addressed in section 3. We will show in section 4 how these two 
representations can he combined in order to obtain all finitedimensional representations of 
SL,(2, C). It is shown that the complex quantum plane [& 71 is a specific corepresentation 
space of the QLG. In section 5 the concept of differential representations [8] is introduced 
which leads to Hilbert space representations of the compact part of the q-deformed Lorentz 
algebra. In the next section we prove that the q-Lorentz generators of [31 generate a Hopf 
algebra dual to the QLG of 121. This analysis shows how a proper chiral decomposition of the 
q-Lorentz algebra can be obtained. Furthermore, we construct the Casimir elements of the 
q-deformed Lorentz algebra. The last section is devoted to the construction of irreducible 
massive spinor representations of the q-deformed Poincar.5 algebra. 

5 Supported by Studienstifiung des d e u e e n  Volkes. 
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2. Representations of SU&) 

Let g := C(a, b, c, d )  be the free associative @-algebra in the variables a ,  b, c, d .  B carries 
the structure of a bialgebra induced by the matrix 
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i.e. a comultiplication A and a counit E are defined on the generators of B by 
2 

A (u i j )  = u k  0 U) E (d j )  = S i j .  (2) 
k=l 

2, denotes the biideal in B which is generated by the well known relations [9] 
a b = q b a  b d = q d b  b c = c b  

ac = qca cd = qdc 
(3) 

The deformation parameter is chosen to be q 1, and the abbreviation hq = q - q-' is 
sometimes used. The matrix U can be made unimodular by setting the quantum determinant 
deb(u) := ad - qbc = 1. We add this condition to the ideal I, and define 4 := (JJI,. 
The bialgebra smcture of naturally extends to gq. It is possible to define an antipode S 
and an antimultiplicative involution * : Bq ----t G, by 

ad = da + l,bc. 

The choice of the involution is such that U becomes a unitary matrix, i.e. U* = S(u). As a 
consequence of these definition the algebra 4 := (%, A ,  E,  S, *) is a *-Hopf algebra [IO]. 
4 is called quantum matrix group SUq(2). Since 4 is a C-vector space it can be shown 
[I I] that the set 

(5) 
constitutes a C-basis of 4. For later use we inroduce [ 121 the mappings P, Q : 4 + 4 

{a'bjc'd' E : i, j ,  k, I E WO, i = 0 or f = 0} 

(6) 
a b  a b  d b  

By definition, P is an algebra homomorphism whereas Q is an anti-algebra homomorphism. 
One easily proves the identities Pa = Qz = i d 4  and PQ = QP. 

We now define C-vector subspaces Vc(f). VR(l), c 4, f E $NO: 

Throughout this work we maintain the convention that the index set is 4 := 1-f, -1 + 
1, . , . , f], and the q-binomials are as usual 181 defined by 

1 -q'" m hip! 
n [n],.![m - nIqq! 1 - q m  

with [nip = - [ 3 := (9) 
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for some m, n E NO. 
These vector spaces can be identified with the space of undotted spinors belonging to 

the quantum group SLq(2. C). We mention that t:) and qy)  can be interpreted as Manin 
quantum planes [6]. For example if we identify t!'{,?i = x and .$f) = y then x and y 
obey the commutation relation x y  = q y x .  An exact treatment of quantum planes in that 
framework will be given in section 4. 

Using the fact that the comultiplication A on 4 is a @-algebra homomorphism, one 
can check that VL(I) (VR(I)) forms a left (right) 4-subcomodule for each I E +NO. By 
direct inspection we find the coproduct (coaction) on the 6:) 

(10) q-k(l+i-m) I-i-k 1 i+i-m m a b c d @ti$-I. 
Since the 6;') are linearly independent in VL(l) matrix elements E 4 are well 

defined by 

They form multiplicative matrices in the sense of Manin [6]. Hence their coproduct and 
counit are 

The explicit form of the matrix elements was given in [13,8]. We have for - j  < i < j 

The functions P?') ( z ;  q)  are the little qJacobi polynomials 

The argument of the little q-Jacobi polynomials in (13) is F = -qbc E dq. This element 
plays a crucial role in the representation theory of SUq(2) since it generates the algebra of 
all bi-K-invariants in 4; K corresponds to the subgroup of diagonal matrices of SL(2). 
Of course, equation (13) does not completely determine all the matrix entries of tu!:;. 
However, the missin ones can be obtained by applying the mappings defined in (6) and 

For further details we refer the reader to 

The explicit form of wjf; and the fact that VL(l)  and VR(l) are subcomodules of 4 
using P ( w f j )  = 8 and Q(wlf:) = 
[8,131. 

leads to the following important identifications: 

i ,  j E Zi. (15) w!" - (0 ( I )  - (0 
1 . 4  - t i  w4. j  - ' l j  

It is then easy to obtain the coaction for VR(l): A($) = 
The matrix elements 

addition to (12) we have 

1.J r,-f 

#) @ di! 1.1' 

naturally cany the *-Hopf structure defined on 4, so in 

(16) w<I1.* = ( - q ) j - i  wt? . S ( q j )  (0 - - ( - q ) i - j  S ( q j )  ( I )  * - - wj,i. (1) 
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Using the restriction of u.:; to the subcomodules VL(l) and VR(I) given in (15) shows that 
(VL(I), A) and (VR(l), A) form unitary corepresentations of the quantum group SU,(2). 

M Pillin and L Weikl 

It can be shown that the quantum group SL1,(2) admits the decomposition 

which means that the set {U:: : I E ;NO. i, j E I ! ]  forms a @-basis of 4. The following 
statements concerning the irreduciblility of SU,(2) comodules conclude this section. 

(i) The comodules (VL(l) ,  A) and (VR(l),  A) are irreducible. 
(ii) Every finite-dimensional irreducible 4-comodule is equivalent to one of the 4- 
(iii) Every 4-comodule is completely reducible. 

course, we could equivalently work with VR(I). 

comodules (VL(l), A) and (VR(I), A), respectively. 

It will be sufficient for us to consider in the following only the comodules VL(I). Of 

3. Complex conjugate representations of , 9 4 2 ,  @) 

In the representation theory of the Lorentz group one often makes use of the fact that the 
finite-dimensional representations can be decomposed into two copies of representations of 
SU(2) .  These copies belong to the spaces of doned and undotted spinors of SL(2,  @). 
respectively. As the corepresentations introduced in the preceding section correspond to the 
space of q-deformed undotted spinors, the construction outlined in this section will lead 
to q-deformed dotted spinor representations. The analysis here is parallel to that presented 
above. 

Let c := @(Li, b,  T, 2) be the associative @-algebra freely generated by 6, g, E ,  2. 6 
carries a bialgebra structure induced by the matrix 

f, denotes the biideal generated by relations 
& = q-15Li g2 = q - ' J g  65 = zg 

Liz = q - ' z  
(19) 

Again a unimodularity condition is imposed, K(i) = 2Z - q& = 1, and added to f,. We 
define 0, := 6/iq. 0, is a bialgebra with coproduct A and counit 2. 

E2 = q-'& Li2 = & - h,& 

In analogy with [I ,  141 we moreover define a multiplicative matrix in c,: 

We can now define an algebra homomorphism j : L7 + c by j ( d )  .= U\. It is easy to 
show that j induces a bijective morphism of bialgebras j : Gq --+ G,. Thus the set 

I '  

{ ~ " T ' P L ~ '  : p = 0 or t = 0. p ,  r ,  s, t E No] (21) 

constitutes a @-basis of <,. 
s on oq: The fact that j is a bijective morphism of bialgebras allows us to define the antipode 

= j o S o j - ] .  Obviously we can identify G, as a Hopf algebra with Gq.i. 
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Therefore the Hopf algebra Gt naturally carries a *-structure i : <, --+ G,. It is defined 
in analogy with (4) by U' := S ( U ) .  

We define & := (e,, i\. Z, S. 5). This is a unitary quantum group naturally isomorphic 
to SU,.I ( 2 ) .  Moreover (g,, A ,  E ,  S )  and (c,, A, E .  s) are isomorphic Hopf algebras with 
respect to the morphism j : G, --+ c,, whereas they are not isomorphic as *-Hopf algebras 
since j does not commute with the *-operation. 

We now introduce briefly the higher-dimensional representations of 4. The mapping 

k : 4 + & (u i j )  H (i:) (22) 

defines a natural bijective conjugate linear algebra antihomomorphism. We have 

(23)  
- o k  = (k @ k )  o A o ~ = Z o k .  

Define 
because of 

:= k(w$) E 4. Of course, is again a multiplicative mabix in d, and 

j ( w ! f ! )  r.1 = ( - q ) j - i  (24) 

{I$ : i .  j E 11, 1 E +Not 

together with (17) and ( 2 1 )  it is clear that the set 

(25) 

The left corepresentation spaces of 4 are obtaiiicd by using the properties of the 
constitutes a @-basis of 4. 
mapping k. We define @-vector subspaces V L ( l )  C 4, I E ;No, by 

From ( 2 2 )  we can deduce the coaction i\ (if)) = xjE,, 
We call the d,-comodules (v" ( I ) ,  A) complex conjugate corepresentations of the 

quantum group S L , ( 2 , @ )  belonging to the spin 1.  We remark that the corepresentation 
spaces (vL (1 )  , A) are unitary since s($)' = Gjf] in  4. All other statements concerning 
the representations given in section 2 directly apply to the complex conjugate representations 
using the mapping k.  

@ gy). 

4. Representations of the quantum Lorentz group 

Let C, := A, @ 4, As a tensor product of the Hopf algebras 4 and 4, C, becomes a 
Hopf algebra with coproduct A@ = ( id4 @ r €3 id&) o (A @ A ) ,  counit E @  = E @ 2 and 
antipode S@ = S@ j. Here r denotes the flip automorphism. The mapping k : 4 + 4 
which was introduced in the previous section induces an involution - : C, + C, via 
a @ b := k-'(b)  @ k(a) for all a E 4 and b E 4. It is possible to define a second 
involution *@ on C which is defined by *@ := * @ i. 

It follows that tC,, A@, c@, S@, -) and (C,, A@, c@, S@, *@) are *-Hopf algebras. The 
first one leads to unphysical representations, as was pointed out in [l]. From the second one 
representations of SU,(4) can be obtained by applying the Hopf algebra morphism id@ j - l .  
Without a reality condition this Hopf algebra leads to the quantum group SL,(2 ,  @) 121. 

We denote by I: := @(a, b ,  c, d ,  a, 6,  E, 4 a free associative algebra B and can 
obviously be identified as subalgebras of L. I: canies the seucture of a bialgebra induced 

- 
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by the matrix 

J, is the biideal in L which is generated by relations (3). (19) and [ 1.2, 141: 

aci =cia - qh,Ec 
a& = q-'6a - h,2c 
a t  = qEa 
a 2  = 2a 

cci = qcic 
cb = r;c 
CZ = &2 

dr? = iid 
db = qgd + qh,cci 
dZ = q-'Zd 
d 2  = a d  + qh,Zc. 

(28) 
c2 = q - v c  

b i  = q-lcib - h,td 
b6 = bb + qh, ( a i  - 2 d )  
bZ = Eb 
b2 = q2b -I qh,aE 

Again we add to 5, the unimodularity conditions of the submahices U and C which makes 
the matrix (27) itself unimodular. Let L, := L/J, .  A conjugation on L, is defined by 
- : L, -+ L,, dj H U'. ,  itj H d.. An antipode on L, is given via the antipodal maps 
on the matrices U and C. We call the *-Hopf algebra L, the quantum group SL,(2,  C). 
Using the diamond lemma [15] one can show that the set of monomials 

I I 

[a'bj$df2Pt'6SZ' i = 0 or 1 = 0, p = 0 or I = 01 (29) 

with i, j .  k ,  1 ,  p .  r, s. t E NO constitutes a @-basis of L,. This shows that 4 and 4 
form sub-Hopf algebras of Lq. We now define a Clinear mapping which turns out to be 
important in the representation theory of the q-deformed Lorentz algebra 

(30) : .2, @ 4 - L, aibjckd! @ JPErPci' H aibjckd'2PZrbsiil, 

This mapping is well defined. Note that using (17) and (21) the set [a'bjc'd' @ &'?$cif : 
i ,  j , k , l , p , r , s , t  E No, i = 0 or 1 = 0, p = Oor I = 0) is a C-basis of 4 84. Since 
the set (29) forms a C-basis of L,, we have that r is an isomorphism and it follows that 

for all I t  E NO i k ,  jt E Itk k = 1,2. ( WL>.IL P l ?  @ .:;,) = wy;;,5j;:;2 (31) 

This is equivalent to the statement that 
( W ~ , , ~ , W ; ~ , ~ ~ .  ( 1 , )  -(I,) . I  1, 1 Z E N O ~  i t , j ~ E I i , , i 2 . j 2 ~ 1 1 ~ ]  

is a Gbasis of L,. In other words we can say that the representations of SL,(2,  @) can, as 
in the classical case, be characterized by a pair ( 1 1 , I z )  which denotes the highest weights 
of the representations of 4 and A,, respectively. 

It is important to note that the mapping r : C, -+ L, is a morphism of coalgebras 
which can be shown by direct inspection on the basis of 4 @ 4. 

Now we can introduce the left corepresentation spaces VL ( 1 1 ~ 1 2 )  c L, , 61.12 E of 
the Q L C ~  by 

VL (II, 1 2 )  := @ c#;;?) p z '  11.12 := p p .  L I  12 (32) 
V I , ,  
fiwr2 

By definition, we get the coaction 
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The L,-comodules (VL ( I I , ! ~ ) ,  A) are corepresentations of the quantum group SL,(2,  @). 
Their irreducibility follows from our previous results. 

The analysis shows that the comodules (32) provide us with a q-deformed spinor calculus 
for arbitrary finite-dimensional representations of SL,(2, @). To make contact with the usual 
SL(2, @) spinor calculus, see e.g. [16], we write symbolically 

zz )  - tf) z ( I ) ~  - k 0 j (6: ) )  $) - k(tf)) Z ( I )  6 - j(tf)). (34) 
In [7] the concept of complex quantum planes in generalization of Manin's [6] 

construction was introduced. We will now show how the two-dimensional complex quantum 
plane can be understood in the framework of SL,,(2, C) corepresentations. 

Let S, be the associative @-algebra generated by elements x, y, X, y and relations 

X Y  = 4Y* x y  = q y x  Y,' = jY 

y i  = qx,' yX = qxy 

-:S,--tS, X H i .  y H y .  (36) 

(35) 
x i  = i x  - q k , j y .  

S, obviously carries a conjugation 

The algebra (S,, -) is the complex two-dimensional quantum plane of [7]. With the help 
of the diamond lemma one can proof that [ x i y j y k X 1  : i ,  j ,  k ,  I E NO] is a C-basis of S,. 

We define a *-algebra morphism 3 : S, + L9 by J ( x )  : = U ,  3 ( y )  := c. 3 is well 
defined because a ,  c,  E ,  2 E L, obey the same commutation relations as x ,  y, X, j E S,. 

3 the quantum plane S, can be considered as a subalgebra of L,. If we define for U E NO: 

(37) 

Obviously 3 is injective 3 (x  i y j - k f f  y ) - - a i c j -  $a -I with i, j ,  k ,  I E NO. Via the identification 

s, := Spanc [.$;:) : [i -I- !z $U, i k  E Ilk, !k E +No, k = 1.2 ] 

3 ('5,) = @ S" . 
we then have 

(38) 

This implies that S, is a quadratic algebra. Thus by (37) the quantum plane can, roughly 
speaking, be indentified with the corepresentation spaces VL(I1, iz) of (32). We remark that 
the 'second spinor copy' used in [1,3] to obtain a q-Minkowski space with non-vanishing 
length is just given by Q (VR) Q ( k ( V R ) )  with the help of the right-comodules and the 
properties of the mapping Q (6). Note that this comodule does not form a subalgebra 
of (28). 

"SN, 

5. Differential representations 

Given a Hopf algebra (H, V. q. A ,  E ,  S) with V the multiplication and q the unit map, we 
denote by (H". V", qo, A", E O ,  So) the maximal Hopf algebra in the algebraic dual Ha of 
H which is induced by the structure maps of H [IO]. For example, the coproduct A' of 
H" is defined as A"((p) = o, o V for 9 E H". Ho can be considered as a Hopf algebra of 
regular functionals acting on H. 

If (H, *) is a *-Hopf algebra then there are two possibilities for a *-structure in Ha. 
We have, for p E H", 
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It will turn out that the second *-structure mentioned will lead to a second possibility to 
introduce a conjugation on the generators of the q-deformed Lorentz algebra different from 
the one developed in [3] as long as 4 # 1. 

Having the concept of the dual Hopf algebra we can define representations of the dual 
Hopf algebra. Given a Hopf algebra (H, A ,  E ,  S) and a left (right) H-comodule ( V ,  6) we 
can define C-linear mappings p : H' + Endc(V) and A : H" + Ende (V) by 

M Pillin and L Weikl 

p (U,) := (U, 8 id") o 6 and A (p) := (id" 8 p) o 6. (40) 
We use the abbreviations p := p (p) and 7 := A (9). For our purposes ( V ,  8 )  is a 
subcomodule of (H, A). It turns out that if (V.8) is a left-H subcomodule then (p, V) is 
an anti-representation and if it  is a right-H subcomodule then (A, V )  is a representation of 
H" (Ha) on V. As mentioned above. we will consider only left-R-subcomodules and are 
therefore naturally led to anti-representations. 

For the finitedimensional left-R-comodule ( V ,  6) we denote a scalar product by (. I .)L. 
Let us define the mapping 

(. , .)L : ( H  @ V) x ( H  8 V) --+ H : (a 8 C ) x ( b  @ 7) - ab* (C I P J L  . (41) 
The existence of the scalar product in our case is guaranteed since we are dealing with 
comodules of the quantum group SUq(2) .  Here the scalar product is given by the Haar 
measure, see e.g. [11,17]. This also gives us the concept of a Hilbert space structure on 
the comodules. Their unitarity can be defined in this way 181. However, this scalar product 
is not bi-invariant with respect to SL&, C). When comparing our results with those of [3] 
one has to notice that the scalar product (41) is conjugate linear in the second component. 

We now outline the construction of the q-deformed dual Hopf algebra of 4. This is, 
in principle, well known from [18,19,8]. However, this serves as a model for introducing 
the non-compact part of the q-deformed Lorentz algebra. We define on the generators 
a,  b, c,  d 

e (  a c d  '):=(: i )  
0 0  

These actions have to be continued on arbitrary monomials of Gq as defined in section 2. 
The following continuations make the mappings i*, B ,  f E G' well defined: 

i* (ab) = i*(a)k*(b) 

B (ab) = i (a) i+(b)  + i - (a) l (b)  B ( 1 )  = 0 (43) 

P ( 1 )  = 1 

i (ab) = i (a) i t  (b) 4- i - ( a ) i ( b )  i ( 1 )  = 0 
where a and b denote arbitrary elements of 9. Let (A;, A", E', So) denote the maximal 
Hopf algebra induced by (Aq, A ,  E .  S). From (43) by building the quotient one obtains 
mappings k*. e ,  f E A: whose comultiplications and counits are given by 

A" (k') = k* 8 k* 6' (k') = 1 

A"(e) = e 8 k C  + k - @ e  eo (e)  = 0 (44) 

Ao(f) = f 8 k t  + k - 8  f &(f) =O. 
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The duality structure implies the well known algebraic relations 

We define U, := U,su(Z) = UC(k+. k - ,  e ,  f). U, is the deformed universal enveloping 
Hopf algebra of su(Z). It has the antipode S”: 

So (k*) = kF So ( e )  = -q-le so (f) = -qf.  (46) 

We mention that the algebra U, has the C-basis {ewk’f” : f i .  U E No, A E Zt. Following 
(39) we have two possible *-structures on the generators of U,: 

(k*)* = k’ e* = f f * = e  

(k’)’ = k’ e’ = q-2 f ,P = q2e .  
(47) 

We now want to find Hilbert space representations of the generators of U,. Hence in a first 
step we calculate using (44) the actions of the generators on the basis elements w$ of 4. 
+ (1 )  - *is. . e ( q j )  (1)  - - q I-1 2E,(l,i)ai+l,j f(wj:j) = q f - i E 9 ( l ,  - i ) J i - l . , .  k (wi . j )  - q  1.1 

(48) 

The abbreviation for 1 E &,. i E ZJ is used: 

(49) 112 E* ( 1 .  i )  := ( [ I  - i],-z[l + i + 1],-2) . 
The Hilbert space (anti-) representations are found if we restrict the actions on w,!; to the 
subcomodules VL(I) as outlined in (15): 

q c J  * (0 ) - - 4 ii ei (0 qcy)) = qf+E,(I ,  i)t:?, ?(e/))  = q ’ - i ~ ~ ( i ~  -i)c:!),. 
(50) 

VL(l)  becomes a Hilbert space if we define the sets {{/) : i E Zt] to be orthogonal with 
respect to (. I .)L. It follows that ( p ,  ( v L ( i ) ,  (. I .)L)) is a unitary antirepresentation of 

Analogous statements can be given for VR(Z). In this case one deals with a representation 

To conclude we say a few words about the Casimir element in U,. It is defined by the 

(-4;. *). 

rather than an antirepresentation and has to use a slightly different scalar product. 

mapping C E d; via 

-Ik+2 + 4k-2  - q - 9-1 + f e .  4 c := 
(4 - 4-I)z  

A straightforward calculation gives its matrix elements 

The Casimir has the property to be real under both possible *-structures, i.e. C’ = C and 
C’ = C. The meaning of this invariance becomes obvious by the following remark. The *- 
Hopf algebras (3, *) and (4, *) are isomorphic-apply the mapping ( j - ’ ) :  : 3 -+ 4. 
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6. q-deformed Lorentz algebra 

I n  this section we will prove that the q-deformed Lorentz algebra of [3] can be understood via 
differential representation as an algebra dual to thequantum group SL,(2 ,  C). We will make 
use of the formalism outlined in the preceding section. In what follows (4, A', 6'. So) 
and (L;, A", eo, So) denote the maximal dual Hopf algebras induced by (A, A ,  E ,  S) and 
(Lq, A ,  E ,  S), respectively. 

We introduce the differential representation p : L; -+ En& (L,), as in the previous 
section. On the basis wtt j ,  G,!:rjt E Lq the action is given by 

M Pillin and L LVeikl 

with (p E L;). We restrict ourselves to the L,-subcomodule (VL(ll, 12). A) following (15): 

For the quantum plane introduced in section 4 we have the following important theorem. 

Theorem 1. The antirepresentation ( p ,  3 (Sq)) of L; is faithful. 

ProoJ The set { U J ~ ~ ~ ~ , G ~ ~ ~ ~  : I I ,  f2 6 WO. i l ,  j ,  E I ! , ,  i ~ ,  j z  E I,?) is, following (31), 
a C-basis of Lq. With 3 (Sq) = @ l , , l , E ; N o  VL(lj, 12) and (54) follows the claim of the 
theorem. 

As in section 5 the comodules vL(l) admit the structure of a Hilbert space if the sets 
[&(') : i E Zj) are defined to be orthogonal with respect to a scalar product (. I .)L. This 
makes the subcomodules into unitary antirepresentations of (4, %). 

We are now able to define the compact part of the q-deformed Lorentz algebra. We 
define an algebra homomorphism p : L + B c L by 

It is not difficult to show that 
Moreover we have that the mapping 

induces an algebra homomorphism p : L, -+ 4 c L,. 

(56) 
is a *-Hopf algebra morphism. These statements can be lifted to the dual Hopf algebras. 
This means that the mapping 

(57) 

p : (Lq, A ,  E ,  S. -) -+ (4, A ,  6, S. *) 

p: : Ai + Li 
is a *-Hopf algebra morphism with respect to both star structures * and * (equation (39)) 
on A; and L;. 

This has the important consequence that there are continuations e t ,  fc, k: E L; of 
the generators e ,  f, k* E 4 such that er, fr, k: posess the same coproducts, counits, 
antipodes, star structures and have the same algebraic relations as e.  f, k* in A;. 

So far we have worked with the Drinfeld-Jimbo basis in U,. Since we want to make 
contact with [3] we define 

( ~ 3 ) * 1 / 2  := kT2 C T+ := q1I2eCk; T -  := q-'I2 f C k ; .  (58) 
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This shows that Ti, T'. (r3)1/2 and (r3)-'/' are elements of L; and their algebra is 

q-IT-T+ - q T + T -  = ,i.;1(1 - r3) ~ + r ~  = q - z r 3 ~ +  ~ - 2  = q 2 r 3 ~ - .  (59) 

The Hopf-*-structure of these generators is easily obtained from those of e, f, k* given 
above. We mention that in 131 only the complex smcture '*' in (47) has been recognized. 

By direct calculation using the comultiplication rules we find the actions on the basis 
(it) -(Id 

Wit,jj  Wi2.6 E '4: 

Restricting ourselves as usual to the subcomodules leads to the antirepresentations of these 
generators on the comodules VL(l) and vL(l). 

Up to now it has not quite been understood whether the q-deformed Lorentz algebra 
[3] could be regarded as the *-Hopf algebra dual to SLq(2, C). ?his is because the algebra 
was found by studying only the actions of the generators on the elements of the complex 
quantum plane. It appears at first that the algebra seems to have seven generators and one 
degree of freedom is removed by heuristically finding a central quantity in that algebra We 
think that these uncertainties justify our detailed analysis. 

By the above considerations we have already treated completely the compact part of 
the q-deformed Lorentz algebra of [3]. We now introduce generators r,, q,. To. S, E I: and 
define their actions on the fundamental representations of SL,(2, C) by 

0 0  q: f ; ) = ( o  0 )  

The key point of our proof i s  to find proper continuations on L such that the mappings to, 
ea, e, S. E L* become well defined. For U ,  b E L this is achieved by 

(1) = 1 

( I )  = 1 

fa (ab) = ?a (a)  (b) + ,i.:S. (a)  'k (6)  

(ab) = Sa ( a )  (b)  +A:?, (a) S. (b) 
(62) 

fa (ab) = Fa (a)  f (b)  + ( U )  t (6) 

So (ab) = (a)  6n (b)  + fa (a) Sa (b)  

Fa(1)=0 

S. ( I )  = 0. 

From Sa,&,, 'fa, s, E L' by forming the quotient one obtains the mappings r,, ua, T,, Sa E 
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L;, such that the following relations hold: 

M Pillin and L Weikl 

To make contact with the q-deformed Lorentz algebra of [3] let us define 

T2r3  = q4r3T2 

s'z3 =q4r3s'. 

The calculation on the basis elements leads directly to 

o2r' - q2h,2s'T2 = 1" = 6 .  

The content of (66), (59), together with the natural constraint, forms the six-generator q -  
deformation of the Lorentz algebra, as proposed in [ 3 ] .  It is important to note that the 
quantity Z constructed in that work by (67) turns out to be the counit acting on each 
element of the quantum group SL,(2.  C) in our approach. 
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Our analysis shows that the algebra C(r3 .  Tt, T-, r ' ,  U', T 2 ,  SI) c Cz is the universal 
enveloping algebra Uqsl(2. C). The antipodes on the non-compact generators are given by 

S" ( ? I )  = U2 S" (U>) = r' 

so (7-2) = -4-2 (r3) 112 T z  S" (SI) = - ( r  ) 

(?I)* = (r3)-l/2u2 (d)* ( r 3 ) l / 2 r l  

(p)* = - ( r 3 ) - 1 / 2 S l  (SI)* = -4-2 (?) 112 T Z  

3 - v2s1 ,  (68) 

In contrast to [3] two inequivalent star structures of the non-compact generators are possible. 

(6% 
1/2 I (?I)* = (?3)+c72 (U")' = (r3)  r 

( 2 - 2 ) .  = -4-2 (r 3 ) -I/' S I  (SI)' = - ( r 3 ) 1 / 2  ~ 2 ,  

The actions of the non-compact generators (65) lead to the restrictions to A, and &. 
This will be useful for the chiral decomposition of the q-Lorentz algebra: 

r'I&=(r 3 ) -1/2 1% 51 I&= 1014 

u21A,= (r3)1/21a, uZl&= 1 0 1 4  

T 2 i ~ =  (4 ( r  3 ) -112 T+) 14- - -01  4 
1 1 I&-- .- (-q-I7--)14 

(70) 

s l&=ol& 
Following (30). the mapping r* : C; -+ (4 8 4)' is a bijective algebra morphism. 

It allows us to decompose the action of the q-Lorentz generators into the Czq and & parts, 
respectively: 

r*((r3)'") = (r3)'"8 (r3)'" 

r* ( T + )  = T+ 8 1" + ( 5 3 ) 1 / 2 8  T+ 

r* (T-) = T- 8 1" + (r3)1/2 8 T- 

r* ( r ' )  = (r3)-'" 8 10 

r* (U2) = (r3)'" 8 10 -A: . T+ 8 T- 
r* (T') = q . ((r3"'" T+) 8 1" 

r* (9) = -4-l . I "  8 T-  . 

(71) 

Because of the properties of r* we can check the relations (66) in A; 8 4. 
therefore define the following operators in 12;: 

We now introduce a chiral decomposition of the q-deformed Lorentz algebra. We 

112 2 N +  := - q-1T2 M +  := q-' (r3)  T 

N- := -4s' M -  := (r3)1/2 (79- + qSl )  (72) 

N' := hi'(1" -' r3 (?I)') M3 := r 3 ( ( r l ) 2 ~ 3  - N 3 ) ,  

The M's and N's have the proper classical limits. Their restrictions to Czq 84 can be 
obtained using (71): 

r* (M+) = T+ 8 (r3)'/* r* ( N + )  = 1" 8 T+ 

r* (M-) = T- 8 ( 5 3 ) 1 / 2  r* ( N - )  = 1' 8 T- (73) 

r* (M') = T~ 8 r3 rx  ( N ~ )  = I" 8 T ~ .  
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This is a chiral decomposition of the q-deformed Lorentz algebra. We see from (73) that the 
M's and N ' s  have the same algebraic relations as (59). i.e. they seperately form a deformed 
algebra belonging to SUq(Z). Since the the M's still have a r3 on the right side of the tensor 
sign the two algebras do q-commute, which means for example that M t N +  = qZNtMt. 
However, this has no deep consequences in the representation theory since it still holds that 
M3N3 = N3M3. 
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We define operators Cy, CN E Lt by 

(74) 
q - ] T 1  + 40' - - 4-l 

C M  := + T - T ~  
(4 - 4-'12 

These operators are Casimir elements of Uqs1(2, C). They admit the chual decomposition 

(76) 
where C denotes the Casimir element of Uq introduced in (52). As it should be, these 
Casimirs interchange under both possible complex conjugations: 

r* (Cy) = c 0 1" r* ( C N )  = I" 63 c 

C& = CN and CY, =CM,  (77) 
A similar chiral decomposition has been proposed in [3]. However, the generators of that 
algebra have the undesirable property that the non-compact generator r1 has to be inverted, 
which is not a well defined operation. 

The Hopf structure of the chiral generators (72) can be obtained using their defining 
relations. 

7. Spinor bases for the q-deformed Poincare algebra 

The q-deformed Poincark algebra of [4,20] can be obtained by adding an inhomogenous part 
to the q-deformed Lorentz algebra which consists of the comodule algebra of the vector 
corepresentation of the QLGr, i.e. VL(1/2, 1/2). This leads to a q-deformed Minkowski 
four vector [I] generated by coordinates A, B, C and D. The generating relations of the 
inhomogeneous part are: 

AB = BA - q-'LqCD +qhqDz BC = CB -q-'LqBD 

AC = CA + qL,AD BD =q2DB (78) 
AD = q-'DA C D  = DC. 

To complete the q-deformed Poincar.4 algebra the actions of the q-lorentz generators on 
the four-vector components have to be specified. These relations can be recovered using the 
results of the previous section. The length of the q-Minkowski vector, M Z  = q-*CD-AB. 
plays the role of the Casimir element, which corresponds to the mass. 

In [20, 211 unitary irreducible massive and massless representations of the q-Poincar.4 
algebra have been constructed. We will consider here only the massive case [20]. In this 
case the states are classified by the eigenvalue of MZ and labelled by the real eigenvalues 
of the energy- and z-component of the q-four vector: Po = q(q+q-')-'(C+ D) and P' = 
(q+q-I)-'(qD-q-lC) respectively, the third component I of the orbital angular momentum 
operator T 3 ,  and an additional parameter r which takes values 0 or 1. A general Hilbert space 
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state In, N,  1 .  r, F )  =: IP) is labelled by the integer eigenvalues of the diagonal generators: 

Orthogonality can be defined by (P’lP) = 6p.p.  
The analysis in [20] showed that the stability subgroup which induces the massive 

representations of the q-deformed Poincark algebra is SUq(2). However, it w k  not possible 
to assign a spin degree of freedom to the corresponding q-deformed one-particle states. 

As in the undeformed case we introduce spinor bases. Mathematically speaking, this 
means we work with covariant rather than with Wigner or Mackey states. Therefore we 
tensor an arbitrary finite-dimensional representation of SL,(2. C) to the spinless state vector 
IP). A general state in the spinor representation is then 

p, g y )  Ip) @ p - ( ~ z )  I ,  <I2 ’ (80) 

It is easy to see how fields of dotted and undotted spinors can be recovered from 
(80). The actions of the Poincark generators on the spinor bases are obtained using their 
coproducts. Let T denote an arbitrary generator of the q-Poincark algebra. Then the action 
on a spinor field is given by 

TlP,f::;?’) = A(T)(IP)  @<f)e/:)). (81) 

We remark that up to now a Hermitian coproduct of the generators of the inhomogenous 
part of the algebra has not been found. Nevertheless we can assume that the coproduct of 
the momenta is of the form A(P’)  = P’ @I 1 + 0: @ P J  [4].  It is clear that the action of 
the momenta on a pure SL&, C) corepresentation space gives zero. 

Specifying the proper inner product of the spinor bases leads to the construction of 
q-deformed relativistic wave equations for a rb i t rq  spin. This procedure. together with 
physical applications, is reported in a separate publication [22]. 
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