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On representations of the g-deformed Lorentz and
Poincaré algebras
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} Sektion Physik, Universitit Miinchen, Theresienstrale 37, D-80333 Milnchen, Germany

Received 2 March 1994

Abstract. 'We construct explicitly all finite-dimensional representations of the quantum Lorentz
group SL,(2,C). Based on this we prove that the g-deformed Lorentz algebra which was
recently introduced can be considered as a Hopf algebra dual to §L4(2, C). The generators of
the g-deformed Lorentz algebra act via a differential representation on a Hilbert space built of
corepresentation spaces of the quantum Lorentz group. A chiral decomposition of the g-deformed
Lorentz algebra is proposed. It is shown how spinor bases for the ¢-deformed Poincaré algebra
can be constructed.

1. Introduction

The symmetries of flat spacetime play an essential role in physics. For example, laws
of physics are required to be invariant under Lorentz transformations and the notion of
an elementary particle can be understood within the representation theory of the Poincaré
group. In recent vears quantum groups have heen investigated intensively. It has been
shown that both Lorentz and Poincaré symmetry admit a generalization within the concept
of quantum groups [1-5]. In this work we address some problems in the representation
theory of the g-deformed Lorentz and Poincaré algebras.

The paper is outlined as follows. In section 2 we recall some facts about the
representation theory of the quantum group SU,(2). It will turn out that the finite-
dimensional corepresentations correspond to the space of undotted spinors of SL,(2, C).
The space of dotted spinors or complex conjugate representations of the quantum Lorentz
group (QLGr) are addressed in section 3. We will show in section 4 how these two
representations can be combined in order to obtain all finite-dimensional representations of
SL,(2, C). It is shown that the complex quantum plane [6, 7] is a specific corepresentation
space of the QLG. In section 5 the concept of differential representations [8] is introduced
which leads to Hilbert space representations of the compact part of the g-deformed Lorentz
algebra. In the next section we prove that the g-Lorentz generators of [3] generate a Hopf
algebra dual to the QLG of [2]. This analysis shows how a proper chiral decomposition of the
g-Lorentz algebra can be obtained. Furthermore, we constract the Casimir elements of the
g-deformed Lorentz algebra. The last section is devoted to the construction of irreducible
massive spinor representations of the g-deformed Poincaré algebra.
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2. Representations of ST/,(2)

Let G := C{a, b, c, d) be the free associative C-algebra in the variables a, b, ¢, d. G carries
the structure of a bialgebra induced by the matrix

i b
(), i = ( P ) )

i.e. a comultiplication A and a counit ¢ are defined on the generators of G by

2
A ) = Zu'k ® ut; €(u') =4 (2)
k=1
I, denotes the biideal in G which is generated by the well known relations [9]

ab = gba bd = gdb be=ch
3

ac = gea cd = gdc ad = da + A,bc.
The deformation parameter is chosen to be ¢ > 1, and the abbreviation A, = ¢ — ¢! is
sometimes used. The matrix u can be made vnimodular by setting the quantum determinant
dety(u) := ad — gbc = 1. We add this condition to the ideal I, and define G, := G/I,.
The bialgebra structure of G naturally extends to G,. It is possible to define an antipode S
and an antimultiplicative involution % : G, — G, by

AT A —¢~'b
c d}’ —-gc a
a b\ _fa < Y._ d —q°'b
c d) TP 4 )T\ —gc a '

The choice of the involution is such that # becomes a unitary matrix, i.e. #* = §(u). As a
consequence of these definition the algebra A, := (G, A, ¢, 8, #) is a +-Hopf algebra [10].
Ay is called quantum matrix group SU,(2). Since A, is a C-vector space it can be shown
[11] that the set

{abictd' € A, 10, j, k1 €Ny, i =00ri=0} (5)

constitutes a C-basis of .4,. For later use we introduce [12] the mappings P, Q : A, — A,
a b a c¢ a b d b

P(fe)=(54) e(ii)-(25) o

By definition, P is an algebra homomorphism whereas @ is an anti-algebra homomorphism.
One easily proves the identities P2 = Q% =id, and PQ = QP.
We now define C-vector subspaces VE(!), VR(), ¢ Ag, 1 € %No:

@)

L 0 o v/ B R

vio=pcs O = [£+i] gtidt (7
ieh g~

R o ® 2a 1 e

VR):=P Cn} ny = [z ] al=iptti, (8)
jekh + 714

Throughout this work we maintain the convention that the index set is &} 1= {-I, —{ +
1,...,1}, and the g-binomials are as usnal [8] defined by

[m] _ [rt]ge!
e

nlg T [n]gallm — nlge!

l_qan

l g

with [n] = %
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for some m,n € Np.

These vector spaces can be identified with the space of undotted spinors belonging to
the quantum group SL,(2, C). We mention that e‘,-'“) and q“) can be interpreted as Manin
quantum planes [6]. For example if we identify E“]/ 22) = x and ’g'(lm = y then x and y
obey the commutation relation xy = gyx. An exact treatment of quantum planes in that
framework will be given in section 4.

Using the fact that the comultiplication A on 4, is a C-algebra homomorphism, one
can check that VL(I) (VR()) forms a left (right) A,-subcomodule for each I € 7N,. By

direct inspection we find the coproduct (coaction) on the 5(”

(gcn) [ o ]m’ii[ 2 ]—1/2[[—;' [I+i]
I+il o e m4+k g2 k g2l M 1y
" q_k(1+,'_m)al—i-kbkC!-{-E—Mdﬂi ® “;:rg-)'l-k—f . (10)

Since the .’;“) are linearly independent in V() matrix elements w ; € A, are well
defined by

( (!)) Zw(” @5(” iel. (11)

ek

They form multiplicative matrices in the sense of Manin [6]. Hence their coproduct and

counit are
( (!)) Zw(!) (i') E( (!J) — 311 (12)

The explicit form of the matrix elements was given in [13,8]. We have for —j <i < J

12
(!1 q(wj)(j—-’)[l_ ] [l_+1:| PY; D (21 ) B, (13)
7 —1 g2 J—i g-?

The functions P(“"s) (z; g) are the little g-Jacobi polynomials

@ ( ) ( —(a+ﬂ+n+l).q—1) L
PO (2 q9) = Z (q—l,q—l) (g, q—l) “la7'2) (14)

The argument of the little q-Jacob1 polynomials in (13) is { = —gbc € A;. This element
plays a crucial role in the representation theory of $U,(2) since it generates the algebra of
all bi-K-invariants in .A,; X corresponds to the subgroup of diagonal matrices of SL(2).
Of course, equation (I13) does not completely determine all the matrix entries of w(”
However, the m1ssn ones can be obtained by applying the mappings defined in (6) and
using P(w)) 1 and Q(w®) = w® . For further details we refer the reader to
(8, 13].

The explicit form of w“; and the fact that V() and V®(!) are subcomodules of A4,
leads to the following important identifications:

w®, = £® wh =¥ i,jel. (15)

It is then easy to obtain the coactmn for VR(): A(n (”) =Yien 1 @uwh.
The matrix elements w, naturally carry the =-Hopf structure deﬁned on A,, so in
addition to (12) we have

(a)*_( gy w®, y S(w (z))__( —gy~ wﬂ,-z S(w (r)) _ {n 16)

W
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Using the restriction of w(” to the subcomodules V*(I} and VR(7) given in (15) shows that
(V(D), A) and (VR(), A) form unitary corepresentations of the quantum group SU,(2).
It can be shown that the quantum group S¥/,(2) admits the decomposition

A= D cuf) with W= {G, , D e L xZ xNo) 14, j € I} (17)
(i, j.DeW

which means that the set {wm 1 € 1Np, i, j € I} forms a C-basis of .4,. The following

statements concerning the 1rreduc1bl|hty of SU,(2) comodules conclude this section.

(i) The comodules (V(I}, A) and (VR(!), A) are irreducible.

(ii) Every finite-dimensional irreducible Ag-comodule is equivalent to one of the A,-
comodules (VX(), A} and (VR(1), A), respectively.

(iii) Every Ag-comodule is completely reducible.

It will be sufficient for us to consider in the following only the comodules V(). Of
course, we could equivalently work with VR(7).

3, Complex conjugate representations of SL,(2, C)

In the representation theory of the Lorentz group one often makes use of the fact that the
finite-dimensicnal representations can be decomposed into two copies of representations of
SU(2). These copies belong to the spaces of dotted and undotted spinors of SL{2, C),
respectively. As the corepresentations introduced in the preceding section correspond to the
space of g-deformed undotted spinors, the construction outlined in this section will lead
to g-deformed dotted spinor representations. The analysis here is parallel to that presented
above.

Let § := C[a, b, ¢, d) be the associative C-algebra freely generated by 4,5,8,d. ¢
carries a bialgebra structure induced by the matrix

; a b
(a k)i.k:l.z = ( ; a ) . (18)
fq denotes the biideal generated by relations
ab=g"'ba bd =q7'db bé = cb
- - - - (19)
4t =g¢7'za &d =g7'de ad = da — A, B¢,

Again a unimodularity condition is imposed, detq (1) = da — qéb = 1, and added to l We

define G, := G/I,. G, is a bialgebra with coproduct A and counit &,
In analogy with [1, 14] we moreover define a multiplicative matrix in gq

i - d —qc
(”J’)i,j:l,z = ( ¢ & ) (20)
We can now define an algebra homomorphism j : G — G by j(u};) := v Tt is easy to
show that j induces a bijective morphism of bialgebras j : G, —> Q—q. Thus the set
[dPe'b'a' i p=0ort=0, p,rs,teNp} @n

constitutes a C-basis of ;.
The fact that j is a bljectwe morphism of bialgebras allows us to define the antipode
S on gq S = joSoj . Obviously we can identify gq as a Hopf algebra with G .
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Therefore the Hopf aIgebra Qq_ naturally carries a *-structure % : G, —> G,. It is defined
in analogy with (4) by u* := S (&).

‘We define Aq (gq, AE, S, *) This is a unitary guantum group naturally isomorphic
to SU,-1(2). Moreover {G,, A, ¢, S) and (G,, A, €, ) are isomorphic Hopf algebras with
respect to the morphism j : G, —» g'q, whereas they are not isomorphic as =-Hopf algebras
since j does not commute with the *-operation. _

We now introduce briefly the higher-dimensional representations of .4,. The mapping

kA, — A ('} — (&) (22)
defines a natural bijective conjugate linear algebra antihomomorphism. We have
Ack=(k®k)oA “oe=¢Eok. (23)

Define wm = k(wm) € Aq Of course, w”. is again a multiplicative matrix in .A and
because of

Fwd) = (—gy " 58 _, (24)
together with (17) and (21) it is clear that the set
{1, j ek, l € iNo} (25)

constitutes a C-basis of A4,.
The left corepresentation spaces of Aq_ are obtained by using the properties of the
mapping k. We define C-vector subspaces V! (I} C .Aq le -Nu, by

- - i, 2 12,
VL ([) - @ Cgifl) si(f) = (&U]‘) [1 iy ] Cf+la[ i. (26)
1133)]

From (22) we can deduce the coaction A ( m) Z}Eh -(l) i ®&; 328

We call the .Aq-comodules (VL (I),A) complex conjugate corepresentations of the
quantum group SL,(2,C) belonging to the spin /. We remark that the corepresentation

spaces (VL (), A) are unitary since S(i (”) “) in A,. All other statements concerning
the representations given in section 2 dlrect]y app]y to the complex conjugate representations
using the mapping k.

4, Representations of the gquantum Lorentz group

Let C; := Ay ® A,. As a tensor product of the Hopf algebras A, and 4,, C, becomes a
Hopf algebra with coproduct A® = (id4, ® r ®id Aq) (A ® A), counit €® =e® & and
antipode $® = S® §. Here t denotes the flip automorphism. The mapping k: A, — .,A:q
which was introduced in the previous section induces an involution = : ; — C, via
a®b:= k') Qk(a) foralla € A; and b € .A,q It is possible to deﬁne a second
involution *® on C, which is defined by +® := * @ %.

1t follows that ‘(ICq, A®,¢®, 5%, ) and (C,, A®, €®, 52, ¥®) are »-Hopf algebras. The
first one leads to unphysical representations, as was pointed out in [1]. From the second one
representations of $0,;(4) can be obtained by applying the Hopf algebra morphism id® j -1
Without a reality condmon this Hopf algebra leads to the quantum group SL,(2, C) [2].

We denote by £ : C(a b,c,d,a,b, c,d-} a free associative algebra, g and G can
obviously be identified as subalgebras of £. L carries the structure of a bialgebra induced
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by the matrix

k
; ()12 0
= (0 ) @
BT 0 (#) 1.2
J, is the biideal in £ which is generated by relations (3), (19) and [1,2, 14]:
ad = aa — giycc ¢l = gdc
ab =g 'ba — ryde ch = bc
ac =4ca cC = Cc
ad =da ed = g 'dc
bi=gqlab—Aid  di=&d @)
bb = bb+ gh, (ac': —dd) db = gbd + gA,ca
bé = &b dé=g~'ed
bd = qdb + ghqac dd = dd + gi,cc.

Again we add to J, the unimodularity conditions of the submatrices # and & which makes
the matrix (27} itself unimodular. Let £, = L/J,. A conjugation on £, is defined by
T:Ly — Ly 4l — &, & — ', Anantipode on L, is given via the antipodal maps
on the matrices z and #. We call the »-Hopf algebra £, the quantum group SL,(2,C).
Using the diamond lemmaz [15] one can show that the set of monomials

@b/ td'dPe’a i=0o0rl=0,p=0ort =0} (29)

with i, j k, 1, p,r.s5.t € Ny constitutes a C-basis of £,. This shows that A, and ﬂq
form sub-Hopf algebras of £,. We now define a C-linear mapping which turns out to be
important in the representation theory of the g-deformed Lorentz algebra

riA, @A, — L, dbtd @dPEba — a'bltddreba. (30)
This mapping is well defined. Note that using (17) and (21) the set {a'b/c*d’ @ dP ¢’ &
L,j okl prs,teNy,i=00rl=0, p=0orz=0}is aC-basis of 4, ® A;. Since
the set (29) forms a C-basis of £,, we have that r is an isomorphism and it follows that
r ( ) o pl)

h A f2e 02

Y= wial,  forallkeMo injeh k=12 @1

This is equivalent to the statement that

() (h]
{wil Wi llJ’z

l Z2 € Nf), II! j'l € If;s 12; .’2 € I[z}
is a C-basis of £,. In other words we can say that the representations of SL,(2, C) can, as
in the classical case, be characterized by a pair (/1,{;) which denotes the highest weights
of the representations of A, and A, respectively

It is important to note that the mapping r : €, — £, is a2 morphism of coalgebras
which can be shown by direct inspection on the basis of A, ® A,.

Now we can introduce the left corepresentation spaces VL /), 1) C Lo, hhhe %No of
the QLGr by

Ve ny=@CEnY  ERD =5, (32)

'I“'l|
|2effz
By definition, we get the coaction
(ll Jz) () -(Iz) (h.l‘z)
A(gil.iz Z Z Wiy Wy, Jz J: h (33)

hely pely
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The £,-comodules (VL (/), 1), A} are corepresentations of the quantum group SL,(2, C).
Their irreducibility follows from our previous results.

The analysis shows that the comodules {32} provide us with a g-deformed spinor calculus
for arbitrary finite-dimensional representations of SL,(2, C). To make contact with the usual
SL(2, C) spinor calcus, see e.g. [16], we write symbolically

2§y ~ &P e ~ ko j(E0) z8 ~ k(E?) Zoya ~ JED). (34)

In [7] the concept of complex quantum planes in generalization of Manin’s [6]
construction was introduced. We will now show how the two-dimensional complex guantum
plane can be understood in the framework of SL,(2, C) corepresentations.

Let S, be the associative C-algebra generated by elements x, y, ¥, ¥ and relations

Xy =gqyx xy=4qyx y¥ =73y
- - ) ) L ) (35)
Vi =gky yE =gxy XX = Xx —ghg¥y.
&, obviously carries a conjugation
-8 — & X— X, yr—3. (36)

The algebra (5,, —) is the complex two-dimensional quantum plane of [7]. With the help
of the diamond lemma one can proof that {x’y/ 3%/ : i, j, k,1 € No} is a C-basis of S,.
We define a x-algebra morphism J : S, — £, by J(x) :=a, J(y) :=c. T is well
defined because a,c,a,& € £, obey the same commutation relations as x,y, X,y € &;.
Obviously 7 is injective J (x'y/ ¥x') = a'c/&*3" with i, j, k, | € No. Via the identification
J the quantum plane &, can be considered as a subalgebra of £,. If we define for v € Np:

S, := spang [5,.(,"‘;:2’ h+b=14v i€l b €3No, k=1, 2] (37)
we then have
TJS)=Es.. (38)
veN,

This implies that S, is a quadratic algebra. Thus by (37) the quantum plane can, roughly
speaking, be indentified with the corepresentation spaces VL(l1, lo) of (32). We remark that
the ‘second spinor copy’ used in [1,3] to obtain a g-Minkowski space with non-vanishing
length is just given by @ (VF) @ (k(V®)) with the help of the right-comodules and the
properties of the mapping Q (6). Note that this comodule does not form a subalgebra
of (28).

5. Differential representations

Given a Hopf algebra (H, V.75, A, €, §) with V the multiplication and n the unit map, we
denote by (H®, V°,1n°, A® €°, 5°) the maximal Hopf algebra in the algebraic dual H* of
H which is induced by the structure maps of H [10]. For example, the coproduct A® of
H° is defined as A°(g) = ¢ o V for ¢ € H°. H® can be considered as a Hopf algebra of
regular functionals acting on H.
If (H,*) is a =-Hopf algebra then there are two possibilities for a -structure in H®.
We have, for ¢ € H®,
° H*— H° —> P ok
* @ goxo S (39)
* H®>— H* ¢r— goxo S
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It will turn out that the second #-structure mentioned will lead to a second possibility to
introduce a conjugation on the generators of the g-deformed Lorentz algebra different from
the one deveioped in [3] as long as g # 1.

Having the concept of the dual Hopf algebra we can define representations of the dual
Hopf algebra. Given a Hopf algebra (H, A, ¢, S) and a left (right) H-comedule (V, 8) we
can define C-linear mappings p : #* — Endc (VY and A H* — Ende (V) by

ple) ={(p®idy)od and Afp) = (idy @ ¢) o8, (40)

We use the abbreviations § := p (@) and ¥ = A(g). For our purposes (V,8) is a
subcomodule of (H, A). It turns out that if (V. d) is a left-H subcomodule then (o, V) is
an anti-representation and if it is a right-H subcomodule then (A, V) is a representation of
H* (H% on V. As mentioned above, we will consider only left- H-subcomodules and are
therefore naturally led to anti-representations.

For the finite-dimensional left- f-comodule (V, §) we denote a scalar product by (- | -};.
Let us define the mapping

(b HRV)XHRV)— H: @@®E)x (b@mr—ab*En. ©#1)

The existence of the scalar product in our case is guaranteed since we are dealing with
comodules of the quantum group SU,(2). Here the scalar product is given by the Haar
measure, see e.g. [11,17]. This also gives us the concept of a Hilbert space structure on
the comodules. Their unitarity can be defined in this way [8]. However, this scalar product
is not bi-invariant with respect to SL,(2, C). When comparing our results with those of [3]
one has to notice that the scalar product (41) is conjugate linear in the second component.

We now outline the construction of the g-deformed dual Hopf algebra of .4;. This is,
in principle, well known from [18, 19, 8]. However, this serves as a model for introducing
the non-compact part of the g-deformed Lorentz algebra. We define on the generators

a b, c, d
(2270 o)
c d 1 0 q:I:l/Z
(200 0)
a bY_/(0 0
s(ea)=(00)

These actions have to be continued on arbitrary monomials of G, as defined in section 2.
The following continuations make the mappings k%, &, f € G* well defined:
k* (ab) = k(@) (B) () =1
& (ab) = @)k (b) + k~ (@) () 1) =0 (43)
feh=f@kt®)+E@fey  f1)y=0
where ¢ and b denote arbitrary elements of G. Let (.A", A°, e€°, S°) denote the maximal

Hopf algebra induced by (Aq, A€, S). From (43) by building the quotient one obtains
mappings k=, ¢, f € A whose comultiplications and counits are given by

A° (k) =k* @ k* e (k*) =1
A =e®kt+k @e e fe)=0 {44)
A (H=f@kT+k @ f € (f)=0.
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The duality structure implies the well known algebraic relations

Kk =k kT = 1° ktek~ =g~le

k+2 _k—z + (45)
fe—ef = —— K k™ = gf.

g—q-!

We define U, = Uysu(2) = UCk* k™, e, f). U, is the deformed universal enveloping
Hopf algebra of su(2). It has the antipode $*:

$° (k) = k¥ $)=—~q"'e  S°(f)=—gf. (46)

We mention that the algebra If, has the C-basis {e#k* f* : u, v € No, A & Z}. Following
(39) we have two possible *-structures on the generators of U,:

(ki)* = k* e =f f* =e
() =k  =q¢7f  f=g

We now want to find Hilbert space representations of the generators of 4. Hence in a first
step we calculate using (44) the actions of the generators on the basis elements w“) of A,

47

ki(wg}) = q:ﬂaf'f e( (I)) = q“‘EE (l I) i1, ] f( (1)) = q"iE (l i)a,-_l,,-,
(48)

The abbreviation for [ € %No,i € I; is used:
Eg(.0) = (il — ilg=l +i + 112) 2. (49)

The Hilbert space (anti-} representations are found if we restrict the actions on w() to the
subcomodules VL(!) as outlined in (15):

EED) =% ") =B L8 D) =4 E (L -1)EY,.
(50)

V() becomes a Hilbert space if we define the sets {£%

;' + & € I} to be orthogonal with
respect to { | -}. It follows that (o, (V=(D), (- | }.)) is a unitary antirepresentation of
(A2, %).
q
Analogous statements can be given for VX (7). In this case one deals with a representation
rather than an antirepresentation and has to use a slightly different scalar product.
To conclude we say a few words about the Casimir element in L{;. It is defined by the

mapping C € A7 via
q'1k+2 +qk—2 —-q - q—]

C:= > + fe. 51)
(4-q7")
A straightforward calculation gives its matrix elements
C(wh) = glllall + 1],28 . (52

The Casimir has the property to be real under both possible *-structures, i.e. C* = C and
C* = €. The meaning of this invariance becomes obvious by the foilowmg remark. The *-
Hopf algebras (A7, *) and (A2, *) are isomorphic—apply the mapping ()7 : A2 — A2.
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6. g-deformed Lorentz algebra

In this section we will prove that the g-deformed Lorentz algebra of [3] can be understood via
differential representation as an algebra dual to the quantum group SL,(2, C). We will make
use of the formalism outlined in the preceding section. In what follows (.A“ A°, e S°)
and (ﬁ;, A®, €°, §°) denote the maximal dual Hopf algebras induced by (.Aq A€, S) and
(Lqr A€, S), respectively.

We introduce the differential representation p : £3 — Endg (ﬁq), as in the previous

) o)
ioj Wip iy € Lq the action is given by

ay (le (1) (fz) ) =)
fP( Wi h Fz..rz Z Z nlk: iz.ka wk[.hwk: h (53)

I3 Ehl R:Eﬁz

section. On the basis w,

with (¢ € C*). We restrict ourselves to the £,-subcomodule (V! i), A} following (15):

(!l f:) (Il) -(Ez) (ll.fz)
11 iz Z E (D L !2 12 Jl..l‘z ) (54)
heh, j1el,

For the quanium plane introduced in section 4 we have the following important theorem.

Theorem 1. The antirepresentation {p, J () of £} is faithful.

Proof The set {wi &) : 1,1 € No, iy, jy € L, ia, o € I,} is, following (31),

a C-basis of £,. With J (S;) = @), pein, VH(h, 12) and (54) follows the claim of the
theorem.

As in section 5 the comodules V() admit the structure of a Hilbert space if the sets
[§fm : i € It} are defined to be orthogonal with respect to a scalar product (- | -}¢. This
makes the subcomodules into enitary antirepresentations of (A_", *

We are now able to define the compact part of the g-deformed Lorentz algebra. We
define an algebra homomeorphism p: £ — G C £ by

’3( « " ) - ( 5 “ ) -

1t is not difficult to show that p induces an algebra homomorphism p : £, — A, C £,.
Moreover we have that the mapping

pi{ly e, 8,-) — (A5, A,e, 8. %) (56)

is a x-Hopf algebra morphism. These statements can be lifted to the dual Hopf algebras.
This means that the mapping

ps Ay — L (57)
is a »-Hopf algebra morphism with respect to both star structures = and * (equation (39))
on A7 and L7.

Tlns has thc important consequence that there are continuations eg, fg,k,: € L‘." of

the generators e, f,k* € .A" such that e, f,g, - posess the same coproducts, coumts,
antipodes, star structures and have the same algebraic relations as ¢, f, k* in A

So far we have worked with the Drinfeld-Jimbo basis in If;. Since we want to make
contact with [3] we define

(2 = k32 T+ 1= q'esk; T =g~ V2 fekg. (58)
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This shows that 7%, T3 (z3)1/2 and (z3)~1/? are elements of L5 and their algebra is
g T Tt - gTr T =011 - 7)) THed = g 35t T-P =¢*%T~. (59)

The Hopf-*-structure of these generators is easily obtained from those of e, f, k* given
above. We mention that in [3] only the complex structure ‘+” in (47) has been recognized.

By direct calculation using the comultiplication rules we find the actions on the basis

) —(1':)
wil Wt !1 2 € ‘C

T+( l(l“?'l l(zlf,)rz) = qu-"l—l Eq (Il’ ll) Sj],i1+lajg.ig H q—2i:—2q[2+i2 Eq (Z?.! _12) 5_1'1’515}'2.51—1

T_(wi(fl..)nw(h) ) = qt:_"l Ey (hy —i1) 8j.i—18p — q—2i‘+lq[2+iqu (2,i2) 80 8pi41 (60}

1o J2

(@) (w0l o) = g 528, 181
Restricting ourselves as usual to the subcomodules leads to the antirepresentations of these
generators on the comodules V1(J) and vl

Up to now it has not quite been understood whether the g-deformed Lorentz algebra
[3] could be regarded as the %-Hopf algebra dual to $L,(2, C). This is because the algebra
was found by studying only the actions of the generaiors on the elements of the complex
quantum plane. It appears at first that the algebra seems to have seven generators and one
degree of freedom is removed by heuristically finding a central quantity in that algebra. We
think that these uncertainties justify our detailed analysis.

By the above considerations we have already treated completely the compact part of
the g-deformed Lorentz algebra of [3]. We now introduce generators t,, 04, T, 5; € £ and
define their actions on the fundamental representations of SL,(2, C) by

a b _ (g 0 e B (g7 0
Ble a )™ 0 g2 *\e d )™ 0 g\
(2 Yo g7 0 e b _(4q" 0
a c d = 0 q—1/2 a z d" = 0 q—lﬂ

, (61)

r{e Y0 q'” (& bY_(0O
“\ed/) 0 0© “\¢ dj)\0oO

a by (00 a b\ _[(0 ¢'7
s(ta)=(20) s(22)=(0% )

The key point of our proof is to find proper continuations on £ such that the mappings %,
s, Tny S; € L£F become well defined. For a, & € £ this is achieved by

% (ab) = & (a) & (B) + A28, (@) T, (B) L(H=1
5o (ab) =&, ()3, B + ML @5 B) S () =1

§ . ) . (62)
T, (ab) = T, (@) %, (b) + 8, (@) T, (b) T,(1)=0
S (ab) = §, (@) &a (B) + £, () Sa (B) 5. (1) =0.

From ., 5,, Ty, S, € £* by forming the quotient one obtains the mappings t,,0,,T;, 5, €
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[,;, such that the following relations hold:

A (ry) =1, ®ra+l§Sa®Ta (=1
A O =0 @0+ ®S, (o) =1 )
AT =T,Qtn+d.®T, €’ () =0
A% (S) =S @0+ 1 ® S, €°(S:)=0
To make contact with the g-deformed Lorentz algebra of [3] let us define
= (rs)'”‘ Y
4 p 1/4 (64)
=)L $=()"s

Using the comulu{pllcatmn rules we find the actions of the non-compact generators on the
basis elements w"),

Bt g
1¢,..(h) (fz)
(wu Jt 1: Jz) q lsil-fl 6‘3-1'2

) = ~3 —i . .
o (w‘.(lf}, w};}z =gq 2“8,']‘_;15,‘2“,'2 + lﬁq" “E, (h, i) q‘r"H’ E4 (I3, i2) 8,1, +184.43 41 (65)
T?.( UI) -(f'.') ) q!]'l'i' Eq (l!' il) 6j|.1|+16j2.f2

‘l Jt FlJ‘:

] (] f .
§' (wlgll».)i:l wgzﬂ:) = qlﬁ- I‘Eq (2, i) 5!'1 .fl'sfz.iz+1 .

By direct inspection one finds the full algebra involving the non-compact g-deformed
Lorentz generators:

THr' = ¢!T+ 4 3,72
T—tl =g %17 = 3,58’
72! =qzr1Tz

S'zl =11§!

Tto? =Tt — g%, T
T~0? = q*c*T™ + q*4,S'
TZO,Z — q—ZO.ZTI

Sle? = 28}

Tz'l.'3 = q_4'£'3T2

S'7° = g*r3s',

Tir+ =q‘2T+T2

T~ =TT +4; (6* -7')
SITH = g7 427 (P! - 6%
S'r =718

The calculation on the basis elements leads directly to

o’t! — "M ST =1 =

$iTr = 1281
(66)
oirt = ¢lg2 4 unf,Ssz
£1g3 = g3l
o273 = P3g2
(67)

The content of (66),(59), together with the natural constraint, forms the six-generator g-
deformation of the Lorentz algebra, as proposed in [3]. It is important to note that the
quantity Z constructed in that work by (67) turns out to be the counit acting on each
clement of the quantum group SL,(2, C) in our approach.
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Our analysis shows that the algebra C{z3, T+, T, ¢!,02, T2, § 1} < L; is the universal
enveloping algebra L 5/(2, C). The antipodes on the non-compact generators are given by

So(rl)=0,2 S°(62)=‘El
()= -1 () =— )7
in contrast to [3] two inequivalent star structures of the non-compact generators are possible.

(63)

() = ()"0 0y = ("
) ==@)"s () = (@)

(69)
(@) = @) 0y = ()"

* 24 3 —1/2 * 1/2
(T == "8 () =-() "1
The actions of the non-compact generators (65) lead to the restrictions to A4, and A4,.
This will be useful for the chiral decomposition of the g-Lorentz algebra:

g= (%) g =10,

o”La,= ()" L, - =Tl (70)
=7 1), T =04

§' 4= 014, $g=(-4""T7)lg, -

Following (30), the mapping r* : L) — (4; ® .Zq)* is a bijective algebra morphism.
It allows us to decompose the action of the g-Lorentz geperators into the A4, and .,iq parts,
respectively:

r*((;s)m) (-;3)1/z®( )llz re (.rl) — (1,3)-1/2@ 10
(=Tt 1°+(r ) Tt r* (az) r3) V2 g o J»ﬁ TteT- o
rr(T7)=T"®1°+(t )1/2 ®T- (%) =g - (%) 1/2 ) & 1°

() =-¢g7" 107"

Because of the properties of r* we can check the relations (66) in A; ® .i;.
We now introduce a chiral decomposition of the g-deformed Lorentz algebra. We
therefore define the following operators in £3:

Nt = g!T+ = q—sz Mt = q—l (‘L‘3)l/2 T2
N = —g§ M = (1'3)1/2 (rlT' +¢5Y) (72)
Wi =P @) = (@R -0,

The M’s and N’s have the proper classical limits. Their restrictions to A, ® A, can be
obtained using (71):

r* (M-l-) = T+ ® (73)”2 ?"* (N+) =1° ® T-z-
Fr) =10 () r(V)=rrer” (73)
() =197 r(z)y=1rer.
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This is a chiral decomposition of the g-deformed Lorentz algebra. We see from (73) that the
M’s and N's have the same algebraic relations as (59), i.e. they seperately form a deformed
algebra belonging to SU,(2). Since the the M’s still have a 73 on the right side of the tensor
sign the two algebras do g-commute, which means for example that M*N* = g’ N+t M*.
However, this has no deep consequences in the representation theory since it still holds that
M3N3 = N33,

We define operators Cyr, Cy € Eg by

q—].rl +qﬂ'2 —q - q—l

Cy = > +7°T? (74)
(@-97)
Nn1/2 -1 {-3\"12 2o -1
T T+ T o“—q — -
¢, = 1) ¢! (=) Ty )
(@-q7)
These operators are Casimir elements of I{;s/(2, C). They admit the chiral decomposition
HrCy)=Ce1° rCy)y=1°@C (76}

where C denotes the Casimir element of If; introduced in (52). As it should be, these
Casimirs interchange under both possible complex conjugations:

Cl,=Cy and  Cy=Cuy. an

A similar chiral decomposition has been proposed in [3]. However, the generators of that
algebra have the undesirable property that the non-compact generator r! has to be inverted,
which is not a well defined operation.

The Hopf structure of the chiral generators (72) can be obtained using their defining
relations.

7. Spinor bases for the g-deformed Poincaré algebra

The g-deformed Poincaré algebra of [4, 20] can be obtained by adding an inhomogenous part
to the g-deformed Lorentz algebra which consists of the comodule algebra of the vector
corepresentation of the QLGr, ie. VX(1/2,1/2). This leads to a g-deformed Minkowski
four vector [1) generated by coordinates A, B, C and D. The generating relations of the
inhomogeneous part are:

AB =BA-g7'3,CD +qi,D? BC=CB—q 'A\BD
AC =CA+glAD BD =¢’DB (78)
AD=g"2DA CD=DC.

To complete the g-deformed Poincaré algebra the actions of the g-Lorentz generators on
the four-vector components have to be specified. These relations can be recovered using the
results of the previous section. The length of the g-Minkowski vector, M? = g=2CD—AB,
plays the role of the Casimir element, which corresponds to the mass.

In [20, 21] unitary irreducible massive and massless representations of the g-Poincaré
algebra have been constructed. We will consider here only the massive case [20]. In this
case the states are classified by the eigenvalue of M? and labelled by the real eigenvalues
of the energy- and z-component of the g-four vector: P® = g(g+¢~")""(C+ D) and P* =
(g+g~1) " (gD~q~" C) respectively, the third component ! of the orbital angular momentum
operator T*, and an additional parameter » which takes values O or 1. A general Hilbert space



g-deformed Lorentz and Poincaré algebras 5539

state [n, N, [, r, F) =: |P) is labelled by the integer eigenvalues of the diagonal generators:

1
mz — dquF PO — dO — (qZ(N—H) + qz(F—N+r))
¥ 79)
~ q-—r ) qz(N+l) +q,2(F—N+r}
f = 1 21 z 4 no__ .

Orthogonality can be defined by (FP'|P) = épp.

The analysis in [20] showed that the stability subgroup which induces the massive
representations of the g-deformed Poincaré algebra is SU,(2). However, it was not possible
to assign a spin degree of freedom to the comresponding g-deformed one-particle states.

As in the undeformed case we infroduce spinor bases. Mathematically speaking, this
means we work with covariant rather than with Wigner or Mackey states. Therefore we
tensor an arbitrary finite-dimensional representation of SL,(2, C) to the spinless state vector
|P}. A general state in the spinor representation is then

J‘P g(f].fz)} g(ﬁ)é—ﬂ:)' (80)

H)

It is easy to see how fields of dotted and undotted spinors can be recovered from
(80). The actions of the Poincaré generators on the spinor bases are obtained using their
coproducts. Let T denote an arbitrary generator of the g-Poincaré algebra. Then the action
on a spinor field is given by

TIP, 673 = AM(IP) @ £V5.7). 81

i1d2

We remark that up to now a Hermitian coproduct of the generators of the inhomogenous
part of the algebra has not been found. Nevertheless we can assume that the coproduct of
the momenta is of the form A(P') = P/ @ 1 + Of ® P’ [4]. It is clear that the action of
the momenta on a pure SL,;(2, C) corepresentation space gives zero.

Specifying the proper inner product of the spinor bases leads to the construction of
g-deformed relativistic wave equations for arbitrary spin. This procedure, together with
physical applications, is reported in a separate publication [22)].
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